3.444 \(\int \cos ^4(c+d x) \sin (c+d x) \sqrt {a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=124 \[ -\frac {64 a^3 \cos ^5(c+d x)}{3465 d (a \sin (c+d x)+a)^{5/2}}-\frac {16 a^2 \cos ^5(c+d x)}{693 d (a \sin (c+d x)+a)^{3/2}}-\frac {2 \cos ^5(c+d x) \sqrt {a \sin (c+d x)+a}}{11 d}-\frac {2 a \cos ^5(c+d x)}{99 d \sqrt {a \sin (c+d x)+a}} \]

[Out]

-64/3465*a^3*cos(d*x+c)^5/d/(a+a*sin(d*x+c))^(5/2)-16/693*a^2*cos(d*x+c)^5/d/(a+a*sin(d*x+c))^(3/2)-2/99*a*cos
(d*x+c)^5/d/(a+a*sin(d*x+c))^(1/2)-2/11*cos(d*x+c)^5*(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2856, 2674, 2673} \[ -\frac {16 a^2 \cos ^5(c+d x)}{693 d (a \sin (c+d x)+a)^{3/2}}-\frac {64 a^3 \cos ^5(c+d x)}{3465 d (a \sin (c+d x)+a)^{5/2}}-\frac {2 \cos ^5(c+d x) \sqrt {a \sin (c+d x)+a}}{11 d}-\frac {2 a \cos ^5(c+d x)}{99 d \sqrt {a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*Sin[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-64*a^3*Cos[c + d*x]^5)/(3465*d*(a + a*Sin[c + d*x])^(5/2)) - (16*a^2*Cos[c + d*x]^5)/(693*d*(a + a*Sin[c + d
*x])^(3/2)) - (2*a*Cos[c + d*x]^5)/(99*d*Sqrt[a + a*Sin[c + d*x]]) - (2*Cos[c + d*x]^5*Sqrt[a + a*Sin[c + d*x]
])/(11*d)

Rule 2673

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m - 1)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2674

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m + p)), x] + Dist[(a*(2*m + p - 1))/(m + p), Int[(
g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2856

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> -Simp[(d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(f*g*(m + p + 1)), x]
+ Dist[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x], x] /; Fre
eQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p + 1)/2], 0] && NeQ[m + p + 1
, 0]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) \sin (c+d x) \sqrt {a+a \sin (c+d x)} \, dx &=-\frac {2 \cos ^5(c+d x) \sqrt {a+a \sin (c+d x)}}{11 d}+\frac {1}{11} \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {2 a \cos ^5(c+d x)}{99 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^5(c+d x) \sqrt {a+a \sin (c+d x)}}{11 d}+\frac {1}{99} (8 a) \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=-\frac {16 a^2 \cos ^5(c+d x)}{693 d (a+a \sin (c+d x))^{3/2}}-\frac {2 a \cos ^5(c+d x)}{99 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^5(c+d x) \sqrt {a+a \sin (c+d x)}}{11 d}+\frac {1}{693} \left (32 a^2\right ) \int \frac {\cos ^4(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\\ &=-\frac {64 a^3 \cos ^5(c+d x)}{3465 d (a+a \sin (c+d x))^{5/2}}-\frac {16 a^2 \cos ^5(c+d x)}{693 d (a+a \sin (c+d x))^{3/2}}-\frac {2 a \cos ^5(c+d x)}{99 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^5(c+d x) \sqrt {a+a \sin (c+d x)}}{11 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.02, size = 99, normalized size = 0.80 \[ \frac {\sqrt {a (\sin (c+d x)+1)} \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^5 (-5165 \sin (c+d x)+315 \sin (3 (c+d x))+1960 \cos (2 (c+d x))-3648)}{6930 d \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*Sin[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^5*Sqrt[a*(1 + Sin[c + d*x])]*(-3648 + 1960*Cos[2*(c + d*x)] - 5165*Sin[
c + d*x] + 315*Sin[3*(c + d*x)]))/(6930*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 151, normalized size = 1.22 \[ -\frac {2 \, {\left (315 \, \cos \left (d x + c\right )^{6} + 350 \, \cos \left (d x + c\right )^{5} - 5 \, \cos \left (d x + c\right )^{4} + 8 \, \cos \left (d x + c\right )^{3} - 16 \, \cos \left (d x + c\right )^{2} + {\left (315 \, \cos \left (d x + c\right )^{5} - 35 \, \cos \left (d x + c\right )^{4} - 40 \, \cos \left (d x + c\right )^{3} - 48 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) - 128\right )} \sin \left (d x + c\right ) + 64 \, \cos \left (d x + c\right ) + 128\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{3465 \, {\left (d \cos \left (d x + c\right ) + d \sin \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-2/3465*(315*cos(d*x + c)^6 + 350*cos(d*x + c)^5 - 5*cos(d*x + c)^4 + 8*cos(d*x + c)^3 - 16*cos(d*x + c)^2 + (
315*cos(d*x + c)^5 - 35*cos(d*x + c)^4 - 40*cos(d*x + c)^3 - 48*cos(d*x + c)^2 - 64*cos(d*x + c) - 128)*sin(d*
x + c) + 64*cos(d*x + c) + 128)*sqrt(a*sin(d*x + c) + a)/(d*cos(d*x + c) + d*sin(d*x + c) + d)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 189, normalized size = 1.52 \[ -\frac {1}{55440} \, \sqrt {2} \sqrt {a} {\left (\frac {385 \, \cos \left (\frac {1}{4} \, \pi + \frac {9}{2} \, d x + \frac {9}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} + \frac {2079 \, \cos \left (\frac {1}{4} \, \pi + \frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} + \frac {6930 \, \cos \left (\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} + \frac {315 \, \cos \left (-\frac {1}{4} \, \pi + \frac {11}{2} \, d x + \frac {11}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} + \frac {1485 \, \cos \left (-\frac {1}{4} \, \pi + \frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} + \frac {2310 \, \cos \left (-\frac {1}{4} \, \pi + \frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/55440*sqrt(2)*sqrt(a)*(385*cos(1/4*pi + 9/2*d*x + 9/2*c)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d + 2079*cos(1
/4*pi + 5/2*d*x + 5/2*c)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d + 6930*cos(1/4*pi + 1/2*d*x + 1/2*c)*sgn(cos(-1
/4*pi + 1/2*d*x + 1/2*c))/d + 315*cos(-1/4*pi + 11/2*d*x + 11/2*c)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d + 148
5*cos(-1/4*pi + 7/2*d*x + 7/2*c)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d + 2310*cos(-1/4*pi + 3/2*d*x + 3/2*c)*s
gn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d)

________________________________________________________________________________________

maple [A]  time = 0.88, size = 75, normalized size = 0.60 \[ \frac {2 \left (1+\sin \left (d x +c \right )\right ) a \left (\sin \left (d x +c \right )-1\right )^{3} \left (315 \left (\sin ^{3}\left (d x +c \right )\right )+980 \left (\sin ^{2}\left (d x +c \right )\right )+1055 \sin \left (d x +c \right )+422\right )}{3465 \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*sin(d*x+c)*(a+a*sin(d*x+c))^(1/2),x)

[Out]

2/3465*(1+sin(d*x+c))*a*(sin(d*x+c)-1)^3*(315*sin(d*x+c)^3+980*sin(d*x+c)^2+1055*sin(d*x+c)+422)/cos(d*x+c)/(a
+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4} \sin \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*cos(d*x + c)^4*sin(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\cos \left (c+d\,x\right )}^4\,\sin \left (c+d\,x\right )\,\sqrt {a+a\,\sin \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*sin(c + d*x)*(a + a*sin(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^4*sin(c + d*x)*(a + a*sin(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*sin(d*x+c)*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________